工具车厂家
免费服务热线

Free service

hotline

010-00000000
工具车厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

wsz-f-2地埋式污水处理设施《资讯》

发布时间:2020-08-20 16:26:23 阅读: 来源:工具车厂家

wsz-f-2地埋式污水处理设施

核心提示:wsz-f-2地埋式污水处理设施,本地的售后,本地生物厂家,服务更加周到、方便;公司设备销量全国,不管哪个地方,只要您有需要,我们都送货上门wsz-f-2地埋式污水处理设施 2010年, 微生物燃料电池-电芬顿技术已见报道(Feng et al., 2010).它是将微生物燃料电池(MFC)和电芬顿反应(Electro-Fenton)相结合, 在以氧气为电子受体的MFC中加入Fe2+形成·OH(E=2.8 V)(Asghar et al., 2015), 将有机污染物质氧化成CO2、H2O或矿物盐.但微生物燃料电池也有许多制约因素如自身内阻大功率输出低(梁鹏等, 2007);水中低浓度溶解氧在碳电极表面氧化还原活性低, 需要贵金属阴极催化剂来催化, 增加装置成本(付乾等, 2010).  为提高MFC-electro-Fenton性能, 研究人员大力探索廉价阴极催化剂.漆酶是一类中心含有铜的氧化还原酶, 广泛应用酚类、芳香胺和染料等污染物降解(Le et al., 2016), 是绿色廉价生物催化剂.它催化过程是底物的单电子氧化即漆酶把底物反应生成的电子转移到氧分子上(Bakhshian et al., 2011), 进而将氧还原为水, 同时酶中心铜离子被还原和底物被催化氧化(Lu et al., 2016).一般水中的Cu2+/Cu+的离子氧化还原电位仅0.15 V, 而漆酶催化的离子氧化反应具有较高的氧化电位(>0.68 V)(Prasain et al., 2012).利用漆酶来修饰阴极, 将电子更有目标传递到阴极氧分子上, 促进H2O2产生, 同时酶中心铜离子被底物还原时与H2O2结合生成更多的·OH (Chen et al., 2014), 增加阴极的氧化还原电位来降解聚醚废水.漆酶突出的催化特性使它的底物具有广泛性, 催化反应复杂性, 且生成的产物具有环境友好性(Daassi et al., 2014).但是游离在水中的漆酶有高溶解性, 且重用性差, 易变性失活(Asgher et al., 2017), 利用海藻酸钠和氯化钙将漆酶固定在碳毡表面, 有利于保持漆酶活性.因此海藻酸钠固定漆酶是漆酶修饰阴极的有效途径(Pan et al., 2014).

目前,国内外MFC-electro-Fenton工艺降解聚醚废水研究鲜见报道.现有报道多集中在MFC中研究漆酶的阴极催化效能(Lai et al., 2017).本实验构建微生物燃料电池-电-芬顿体系降解聚醚废水, 用漆酶包埋修饰碳毡阴极, 以阴极室聚醚废水为研究对象, 与未修饰的碳毡阴极电池对比, 考察漆酶包埋修饰阴极对MFC-electro-Fenton产电性能和聚醚废水强化降解效果, 为MFC-electro-Fenton研究扩展思路.  2 材料与方法(Materials and methods)2.1 样品与实验试剂  聚醚废水(江苏句容宁武新材料发展有限公司)COD为(30000±200) mg·L-1, 实验前密封避光保存;深红红螺菌397(台湾帝翰生物科技有限公司);漆酶(安徽酷儿生物工程有限公司);碳毡(北京碳电厂);海藻酸钠(天津市福晨化学试剂厂);H3PO4、KH2PO4、CO(NH2)2、NaOH、CaCl2和FeSO4·7H2O均为分析纯.

1) TCS在紫外光照下可以发生降解,其光解遵循准一级反应动力学.TCS的降解效率随着pH的升高逐渐增大,去质子化的TCS摩尔吸光系数强于质子化的TCS.  2) 由于NOM的光掩蔽作用,NOM会抑制水中TCS的光解,且NOM浓度越高,抑制作用越明显.  3) NO3-的存在可以促进TCS的降解,这是由于光激发NO3-产生的HO·的作用.与单独存在NO3-相比,NO3-和HCO3-的同时存在进一步加快了TCS的光解,这可能归因于HCO3-和HO·反应生成的CO3·-.  4) TCS在紫外辐射下共生成7种降解产物,根据这些反应产物推测TCS的光解机理主要包括3种不同的转化路径,分别为脱氯氢化、脱氯羟基化和醌化反应. 聚醚又称聚醚多元醇, 通常是以活泼氢基团化合物作起始剂, 再与环氧化合物在催化剂作用下开环聚合而成(D′Souza et al., 2015).聚醚废水由聚氨酯、造纸、日化和机械等工业产生, 直接被排放常常危害水产养殖业和河流生态环境, 甚至通过食物链富集损害人体健康.因聚醚废水成分复杂(王慧等, 1999), 有异味且呈酸性, COD高(一般10~30 g·L-1).目前处理聚醚废水工艺主要有陶瓷膜技术, 厌氧生物滤池-接触氧化工艺和厌氧-好氧工艺等, 但聚醚废水中含有大量醇羟基(钟飞等, 2009), 传统物理化学方法难以处理.例如庞婷等(2016)Fenton-混凝处理共聚醚需要外加H2O2, 带来安全隐患;冯俊生等(2014)利用Fenton-UASB-BAC组合工艺降解聚醚废水, 工艺繁琐成本巨大;释秀鹏等(2012)利用生化强化池处理聚醚废水, 成本大且遗留药剂易造成二次污染.需寻求一种高效环保降解聚醚废水的方法.微生物燃料电池-电芬顿在处理废水时也收获电能(刘睿等, 2017), 底物来源广泛, 操作条件温和(Dios et al., 2014), 无二次污染, 在能源与环境领域有广阔前景.

VPN翻回国内

VPN翻回国内

Android翻墙加速器